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identification of the selective small-molecule modulators or rare molecules and prediction of their behavior.
Application of the automated workflows and databases for rapid analysis of the huge amounts of data and artifi-
cial neural networks (ANNs) for development of the novel hypotheses and treatment strategies, prediction of dis-
ease progression, and evaluation of the pharmacological profiles of drug candidates may significantly improve

if‘lc,i‘flivgiﬁsi.ntelligence treatment outcomes. Target fishing (TF) by rapid prediction or identification of the biological targets might be
Artificial neural networks of great help for linking targets to the novel compounds. Al and TF methods in association with human expertise
Target fishing may indeed revolutionize the current theranostic strategies, meanwhile, validation approaches are necessary to
Drug delivery systems overcome the potential challenges and ensure higher accuracy. In this review, the significance of Al and TF in the
development of drugs and delivery systems and the potential challenging issues have been highlighted.
© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last decades, development of the innovative systems for
targeted delivery of therapeutics with maximal efficiency and minimal
side effects has attracted a growing interest [1-3]. Controlled drug de-
livery and overcoming the challenges associated with conventional
drug delivery systems including the systemic toxicity, narrow therapeu-
tic index, and dose adjustment in long-term therapy have been the
focus of intense research [2,3]. Application of the micro-fabrication
technology for production of the implantable microchips appears prom-
ising for controlled delivery of drugs [4]. Microfabricated drug delivery
systems including the drug reservoirs with a variety of geometries or ca-
pacities and capable of opening on command, provide continuous or
pulsatile drug delivery [5-7]. Using this type of multifunctional and so-
phisticated devices for controlled drug release, a variety of challenges
associated with traditional delivery systems have been addressed [8].
For controlled and targeted delivery of therapeutics, application of the
implantable drug delivery systems (Fig. 1) with ability of automatic
adjustment of drug concentration and timing of drug release is a prom-
ising approach for improving the efficiency, safety, and patients’ compli-
ance [9]. This would be particularly important in chronic diseases which
require timely treatment and regular monitoring.

Designing the implantable drug delivery systems necessitates con-
sideration of a number of points such as dose adjustment, targeted de-
livery, sustained release, and intelligent control system [9]. Neural
networks, fuzzy logic, integrators, and differentiators have been applied
for designing the control systems [10,11]. Methods of drug delivery in-
clude the focused ultrasound, micro-pump mechanism, and targeted
delivery by microrobots [12-14]. For creation of the micro- or nanopar-
ticles for drug delivery, application of the microfluidic platforms is a
promising approach [15,16]. Using the microfluidic technology enables
the development of smart drug delivery systems, e.g., Janus micro- or
nanoparticles capable of delivery of multiple drugs [17,18]. For pro-
grammed drug delivery, electronic components, wireless communica-
tion hardware, and power supply have been embedded in a microchip
implant (MicroCHIPS, Inc.) (Fig. 2) followed by a pulsatile release for
about six months [19].

In first clinical trial, implantable microchips have been applied in os-
teoporotic patients for drug delivery [20]. Controlled insulin delivery
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Fig. 1. Implantable drug delivery system. Adapted from Ref. [9].

and continuous monitoring of glucose may significantly reduce the
complications of diabetes. In this context, integration of glucose sensors,
insulin delivery system, mathematical models and control algorithms is
helpful. Integrating the insulin pump, dose calculator, and glucose
meter into a device, an automated system has been provided for moni-
toring of glucose and delivery of insulin [3,21]. In designing intelligent
delivery systems, on-demand adjustment of dose or rate of drug release,
targeted delivery, and stability of pharmaceuticals should be taken into
account [22]. Regarding the self-monitoring delivery systems, appropri-
ate algorithms should be applied to control the amount and timing of
drug release [3].

Information technology, wireless communication, and artificial neu-
ral networks (ANNs) contribute to the creation of smart drug delivery
systems that might be useful for overcoming the limitations of conven-
tional treatment strategies [2,3]. Wireless communication provides
more flexibility for controlled drug delivery devices. The units receive
the instructions from the external sources, send data to the monitors,
and regulate drug release [3]. ANNs containing the interconnected pro-
cessing elements which are created via simulating the network of
model neurons, have been applied to develop software for mimicking
the biological processes, generating the control algorithms, pharmaco-
dynamic/pharmacokinetic modeling, controlled drug delivery, and eval-
uating the effectiveness of treatment strategies [3,23-29]. Using
machine learning approaches for predicting ligand-based targets has re-
sulted in the emergence of target fishing (TF) in which ligand datasets,
target proteins, and relationship between the ligands and targets could
be used to predict protein targets of novel compounds with biological
activities [28,29]. Indeed, application of high technologies is necessary
for development of the next generations of drugs and innovative deliv-
ery systems. This review highlights the significance of artificial intelli-
gence (Al) and TF in designing of drugs and delivery systems and the
potential challenging issues.

2. Artificial intelligence: the general aspects

Ideally, the term Al is applied to demonstrate the ability of a machine
to mimic the cognitive functions of humans [30]. Creation of the novel
generation of information, acquiring a higher degree of precision, auto-
mated simulations and predictions, continuous performance, and early
detection or monitoring of a variety of disorders are the main advan-
tages of Al [30-32]. In general, Al algorithms are used for more accurate
analysis, interpretation, or management of data or complex functions
[30]. In this context, statistical pattern recognition methods, computa-
tional intelligence, biological-based approaches (e.g., neural networks),
and probability theories are integrated in Al [31,32]. Al tools enable the
prediction of in vivo response, pharmacokinetics of novel therapeutics
including their quantitative structure-property relationship (QSPR) or
quantitative structure-activity relationship (QSAR), appropriate dosing,
and skin- or blood-brain barrier permeability [33-43]. Based on the
importance of prediction of the pharmacokinetic profiles of drug candi-
dates, application of in silico tools may result in the increased efficiency
and cost reduction in drug research projects [44]. In this context, ma-
chine learning techniques including the support vector machine, Gauss-
ian process, random forest, k nearest neighbor, classification and
regression tree, or Naive Bayes Classifier would be useful [44].

Alimplicates a variety of approaches including those inspired by the
biological processes [32,34]. Besides the pattern recognition, clustering,
data modeling, and function approximation, ANNs are able to create
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time. Adapted from Ref. [19].

nonlinear input-output mappings, select the optimal gradient condi-
tions in chromatography, analyze the multivariate nonlinear relation-
ships in pharmaceutical research, design the pre-formulations, and
predict the behavior of drugs [23-28,45,46]. Neural network modeling
is a promising approach for describing the molecular structure of or-
ganic compounds and prediction of their physicochemical characteris-
tics [47]. Processing elements called as the artificial neurons or nodes
are the building components of ANNs [22,23]. Number of nodes in the
input and output layers is determined using the number of independent
and dependent variables, respectively [24,25]. Number of hidden layers
and nodes in each layer depend on the complexity of problems [30-33].
In many of the ANN models, only one hidden layer is included, mean-
while, more than one hidden layer are used for modeling the complex
problems [31,32]. Noteworthy, small number of hidden layers and
nodes disrupts the learning capability of ANN models and large number
of them results in overfitting [22-33,45]. Based on their functions, ANN
models are classified into the associating, feature-extracting, or non-
adaptive networks [31,32]. Since the relationship between the formula-
tion and process factors and release profiles of controlled-release drug
delivery systems is not linear, associating networks are preferred for de-
velopment and optimization of the controlled release formulations
[22-33]. ANNs are usually characterized by their architectures [25].
Using specific network topologies, it has been tried to enhance the ro-
bustness of traditional architectures [25,26]. There are two types of neu-
ral networks including the static and dynamic networks. The major
difference between these networks is determined by the mechanism
of signal transmission through the network [25,26]. In the static
networks, outputs are calculated based on their connection with
feedforward inputs [25,26]. Among various types of the static networks,
multilayer perceptron (MLP) network (Fig. 3) is the most commonly ap-
plied network which maps the input data sets [47,48].

In MLP learning algorithm, the relationship between the inputs and
outputs has been demonstrated as follows:

Vi = fol30% bo + SN Wi - Fiu(bh + 1o Winxi)]

(X;, yi: the primary input and output, Wi, Wy (i=1,2,...,Ny0o =1, 2,
..., No): weights of connections between the input and hidden units, and
hidden and output units, respectively, b,, by,: biases of the output and
hidden units, f,(-), fu(-): output and hidden functions, respectively),
[48].

This neural network architecture includes multiple layers of nodes
and each layer is fully connected to the next one leading to the recogni-
tion of particular elements [47,48]. MLP has been used for designing
controlled release formulations, prediction of drug dissolution profile,
and optimizing the formulations and drug release profile [49-51]. Due
to the inner connectedness, dynamic networks are usually referred

as recurrent networks and various processing elements provide the
flexibility [52]. In dynamic neural networks, past information is used
to predict the present and future states of a system. This might be useful
for characterizing or modeling drug release from controlled release for-
mulations [53,54].

ANNSs are trained to perform highly-specific tasks [26]. For training
an ANN model, experimental data are usually categorized into the test,
training, and validation sets [26,28]. Robust data sets are preferred for
training ANN models and obtaining more reliable results [26,28,45]. In
supervised training, ANN model is presented with input/output data
sets [28]. In unsupervised training, inputs, but not desired outputs, are
provided in the network [24-28]. In order to estimate minimum mean
square error (MSE), training and validation procedures are applied for
calculation of the optimum weights and biases [45]. Upon the integra-
tion of searching algorithms such as the genetic algorithms (GAs),
trained ANN models have been used for optimizing the formulations in-
cluding the controlled release ones [33-35]. ANNs in combination with
GAs have been used for optimizing the method of detection of similar
biophenols in blood [34,35,55].

Over the last decade, increasing interest has been attracted towards
the realization of quality by design principles [56,57]. Response surface
methodology (RSM) and ANN models have demonstrated significant
sensitivity to the organization of experimental data sets [56]. Mean-
while, ANN-based models have shown superior predictive power than
RSM and provided higher robustness for determination of the process
design space and optimizing controlled release formulations [56,57].

Besides applications in genomics, proteomics, data modeling, devel-
opment of the pharmaceutical products, and prediction of the bioavail-
ability and behavior of drugs, ANNs have been suggested as reliable

D12 J

Fig. 3. lllustration of the multilayer perceptron network architecture. Adapted from Ref.
[63].
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Fig. 4. An example of the generalized regression neural network architecture. Adapted
from Ref. [211].

tools for capturing cause-and-effect relationships and prediction of
in vitro and in vivo data (IVIVC) correlations [58-62]. IVIVC in associa-
tion with ANNs provide the possibility for interpolation of the pharma-
cokinetic parameters and constructing complex relationships [62].
However, ANNs may not be useful for identifying the mechanism of cor-
relation between the variables [63]. Following the development of IVIVC
for modeling the sustained release paracetamol matrix tablet formula-
tions, it was found that data generated by generalized regression neural
network (GRNN) analysis, as a non-linear modeling tool (Fig. 4), were
closer to those observed in vivo [64]. This indicates the suitable predict-
ability of GRNN analysis and its ability for generalizing the complex re-
lationships between the input and output parameters, compensation of
differences in the kinetics of drug release under different conditions,
and reliable estimation of drug behavior in vivo [64].

For development of the effective IVIVC, the ability of ANN models for
incorporating a large number of variables and relationships without
predefined model structure or assumptions might be of great signifi-
cance [65]. The equation of GRNN is presented as follows:

nnp

y=_viexp(—D(x,x;))/ Y exp(—D(x.x;)) D(x,x))
i=1 i=1

= 2l f—xi/oy)’

(D: Distance between the point of prediction and training sample
which is applied to clarify the mechanism by which training samples
represent the prediction position (using o as smoothness parameter),
[65].

Using GRNN in a compressed multiunit particle system has provided
the possibility to optimize the formulation and drug release profile [66].
This network type has been useful in prediction of drug dissolution pro-
file [49,51]. Moreover, ANNs are promising tools for modeling the ag-
glomeration processes [67].

2.1. Al for biomedical applications

Application of Al strategies provides promising opportunities for
biomedical applications including the early diagnosis of a variety of dis-
orders, prediction of signaling and metabolic pathways and patients’ re-
sponses to therapies, and offering personalized treatment options
[68-80]. In comparison to the common methods, confidence level for
predictions made by ANNs may reach > 90% [75-80]. Such a predictive
power might be a key step in development of the individualized treat-
ment strategies [78,80]. ANN models help to predict the effects of
drugs in individual patients [81]. In asthmatic patients receiving the
monodisperse aerosols of salbutamol sulphate, ANNs have been applied
for modeling the relationships between the in vitro data and in vivo

effects, prediction of aerosol behavior, and estimation of lung deposition
of aerosol [81]. ANNs have also been used to create models capable of
prediction the relative lung bioavailability of salbutamol and evaluation
of IVIVC for different dry powder inhaler formulations [58].

An anesthetic agent administration and control system has been de-
signed using a qualitative modeling and simulation methodology and
fuzzy inductive reasoning which provide a suitable control performance
of the anesthetic agent delivery system and enable development of a
qualitative model for prediction of patient’s behavior [82].

Continuous glucose sensing with insulin pump technology running
on fuzzy logic rules is a promising approach for development of the
closed-loop artificial pancreas [21]. ANNs have been applied for glyce-
mic regulation and identification of patient dynamics [83,84]. Al tools
are also helpful for rapid detection, classification, and quantification of
pain, selecting the optimal treatment, and individualized therapy
[85-88] that might be of great significance for reducing pain-induced
pathological lesions.

Increasing the prevalence of obesity worldwide appears quite
concerning. Since conventional treatment strategies are associated
with a number of limitations [[89-92]], Al techniques provide the possi-
bilities to predict the obesity and identify the genetic risk variants and
relationship between the obesity-related disorders [93]. Fuzzy logic
models have been applied to better understand the causes of obesity,
prevent the disease or reduce its mortality and morbidity, and improve
patient’s quality of life [93].

Based on the significance of determining skin permeability of drugs,
ANNs have been applied for modeling the process of skin transport and
prediction of skin permeability with a reasonable accuracy [94-98] that
may facilitate rational drug design. Using ANN analysis, an in silico
method has been developed to predict the absorption of cosmetic prod-
ucts, physicochemical properties of vehicles, and human skin perme-
ability coefficient [99]. This might be a promising approach for risk
evaluation of the cosmetic ingredients.

Al techniques provide novel insights into the biophysics of cancer
and enable prediction of cancer pathways [100,101]. An Al model has
been applied to predict the risk of lymph node metastasis in patients
with colorectal cancer and determine the necessity for further surgery
following the endoscopic resection of tumor [102]. In this respect, un-
necessary surgical procedures can be avoided.

Using the complex network approaches, it would be possible to
assess the evolution of diseases, identify the factors implicated in the
metabolic pathways, and process huge amounts of data related to the
interactions between a variety of drugs, metabolites, and enzymes
[103,104]. This might be of great significance in the development of
more efficient therapeutics.

2.2. The role of Al in the advancement of tissue engineering

Tissue engineering (TE) in which a variety of strategies have been
employed for development of substitutes for lost or damaged tissues,
drug screening, and evaluation of the pharmacological profiles of
drugs, is faced with several challenging issues [105-108]. Besides the
modeling approaches and robotic techniques for manufacturing high-
performance products and improved regeneration of tissues, ANNs
have been used for prediction of TE strategies and their outcomes and
generating TE schemes [105,109,110] that may result in more effective
performance of TE projects with reduced failures and costs and im-
proved therapeutic efficiency. Al has been suggested as a powerful
tool for engineering tissues or precision biomaterials with high accu-
racy, and optimizing treatment protocols for individual patients
[110-113] that might be of key importance in regenerative medicine.

2.3. Integration of Al and nanotechnology

Al programs can be used for accelerating and optimizing the
nanofabrication process. A variety of methods such as decision tree or
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Fig. 5. A variety of scientific fields can be affected by the convergence of artificial
intelligence and nanotechnology. Adapted from Ref. [115].

Bayesian network have been used for data mining, clustering, classifica-
tion, or prediction [114]. Integration of Al and nanotechnology affects a
variety of scientific fields (Fig. 5) that may result in the development of
smarter technologies [115].

Al techniques have been used for solving the problems of
nanotechnology including those related to designing of nanosystems,
nanocomputing, and nanoscale simulation for which Al strategies
provide novel designing principles, reduced computation time, efficient
parameter estimation and system simulation, or interpretation of the
experimental findings [115].

Al paradigms provide the possibility to overcome the physical limi-
tations of nanotechnology and produce nanoarchitectures with in-
creased computing power [114]. Scanning probe microscopy (SPM) is
a useful tool for imaging sample-probe interactions, characterizing sam-
ple topography, or identifying the location of nanoparticles [116,117],
meanwhile, signal interpretation is quite challenging [118]. Application
of Al strategies provides a range of possibilities to address potential
challenges, acquire a deeper knowledge about the interactions between
the probes and samples, estimate the dielectric constants of samples
and sample-tip distance, and more accurate image analysis [115]. In
order to better clarify material properties, functional recognition imag-
ing (SPM approach) has been represented in which the principal com-
ponent analysis (PCA) and ANNs are used for simplification of the
input data, reduction of the number of independent variables,
extracting the relevant information from datasets, and faster problem
solving [119]. Besides application for development of smarter sensors,
Al tools have been used for categorization of the structural features of
nanomaterials and assessment of their impact on the biological systems
[120,121].

In nanomedicine, ANNs have been employed for modeling or analy-
sis of the process of nanoparticle preparation leading to significant re-
duction of efforts, time, and costs [122-125]. QSPR modeling methods
have been used for modeling the phase behavior of amphiphilic nano-
particles [126]. Using ANNSs, a mathematical model has been developed
for predicting the particle size and polydispersity index (PDI) of poly-
meric nanoparticles prepared by emulsification solvent evaporation
method [127]. ANN model was built using the experimental datasets
for covering all of the polymer properties which affect particle size
and PDI of nanoparticles. The input layer of ANN model consisted of
five factors; viscosity of polymer solutions, contact angle between
water and polymer film, interfacial tension between water and ethyl
acetate polymer solutions, poly(vinyl alcohol) concentration, and
solvent to water ratio. Output layer included two responses; particle
size and PDI of nanoparticles. Feedforward neural network with
backpropagation learning algorithm was applied for model training.

Based on the results, concentration of poly(vinyl acetate) was the
most important factor which affected nanoparticle size followed by in-
terfacial tension, solvent to water ratio, viscosity, and contact angle. Fur-
thermore, concentration of poly(vinyl acetate) showed the highest
impact on PDI followed by the viscosity, interfacial tension, contact
angle, and solvent to water ratio [127]. Moreover, ANNs have been con-
structed for prediction of the particle size and entrapment efficiency of
noscapine-loaded polyethylene glycol/polylactide (PEG/PLA) nanopar-
ticles using various factors including the polymer to drug ratio, number
of blocks, and molecular weight of polymer. Polymer to drug ratio and
molecular weight of polymer showed the most dominant effects on
the entrapment efficiency and particle size, respectively [128].

The ability of trained ANNs for prediction of the entrapment effi-
ciency and particle size of nanoparticles might be of great significance
in the development of more efficient nanotherapeutics [122-125]. For
theranostic applications, determining optimal physicochemical proper-
ties of nanoparticles and providing maximal accumulation at target site
are of critical importance [124,125]. In order to target the diseased mi-
crovasculature, ANNs have been applied to predict the optimal particle
size and number of nanoparticles adhering to the vessel walls [129].
For structural characterization of the nanoparticle clusters and
obtaining the unbiased cluster configurations, GA provides a deeper
knowledge about the optimal arrangement of particles [130,131]. GA
provides the possibilities to investigate the lattice structures and ac-
quire optimal parameters for electron microscope imaging, nano-
optics, or nanofabrication processes [115,132-134].

Carbon nanotubes (CNTs) with suitable stability, thermo-electrical
conductivity, and mechanical properties have been extensively used in
theranostic settings [135-142]. ANNs facilitate detection of organic
compounds by CNTs [143]. Application of ANN models with higher
computational abilities than common numerical models, has led to
more accurate determination of the physical properties of quantum
dot semiconductor optical amplifiers [144]. In designing the nanosys-
tems, ANNs have been applied to identify the relationships between
the input variables and output response. Furthermore, ANNs models
are able to predict outputs [145].

Al techniques and paradigms are useful for easy simulations at nano-
scale and development of nanodevices including the nanocomputers for
performing complex tasks such as sensory information processing
[115,146-148].

Noteworthy, interaction between the Al and nanotechnology is
bidirectional. For instance, application of the nanotechnology-based
quantum or DNA computing has provided solutions for a variety
of problems [149,150]. Nanocomputing devices including the bio-
inspired ones execute machine learning paradigms [151] that might
be of key importance for solving the complex analytical problems.

3. Application of Al approaches for development of drugs and
delivery systems

In modern drug discovery, creating the molecule libraries, identify-
ing novel drug candidates with optimal properties, predicting the bio-
logical functions of proteins, and deep learning play critical roles
[152-158]. In biopharmaceutical companies, using Al platforms for ana-
lyzing the biological data, identifying drug targets, and searching for a
variety of pharmaceuticals might result in more effective drug discovery
[159]. In the early phase of drug discovery, elimination of the inactive or
toxic compounds is of critical significance [69,71]. Besides fast filtering
or virtual screening methods, machine learning classification methods
have been applied for screening and classification of drugs or nondrug
collections and prediction of toxicities [160,161]. Support vector ma-
chines implicating the molecular structure descriptors and heuristic
method have been used for prediction of the activity of enzyme inhibi-
tors or rate-limited drug absorption [162,163]. In a QSAR study, 1,4-
dihydropyridine calcium channel antagonists have been screened by
least squares support vector machine [164]. Machine learning methods
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enable prediction of target-drug interactions that might be of key im-
portance in identification of the novel drugs or targets [165]. Among
the supervised learning algorithms, regularized least squares classifier
has been suggested as an efficient algorithm for prediction of
drug-target interactions [165,166]. Furthermore, semi-supervised link
prediction classifier has shown high performance in predicting drug-
target interactions [167]. Gaussian interaction profile kernel and regu-
larized least squares have suitable predictive performance, meanwhile,
combination of Gaussian interaction profile kernels and genomic and
chemical kernels has provided better predictive power [168]. During a
variety of experimental procedures, findings obtained from optimal
ANN-based models have been in good agreement with experimental
data [169] indicating the suitable power of ANNs for being applied as
the alternative of complex equations. Using ANNS, it would be possible
to model the complex biological data and nonlinear systems, solve the
problems of multivariate and multi-response systems, predict the
secondary structures of proteins, and classify cancers [46,170-172]. Fur-
thermore, ANNs have been applied for modeling the reaction rates such
as the conversion rates of the oxidation reaction and prediction of the
behavior of semibatch reactors in a series of experimental conditions
[173]. Development of deep neural network models provides the possi-
bility to predict the pharmacological profiles of drugs including their
mechanisms of action and indications [69,152]. Besides providing pre-
dictive solubility models, undirected graph recursive neural networks
method (a variant of recurrent neural network) is able to model drug-
induced liver injuries [174].

Al approaches may also be applied to develop the predictive models,
identify the biomarkers, construct correlations between the gene ex-
pression profile and clinical phenotype, and facilitate the personalized
therapies [175-177]. Besides application in the early-stage drug discov-
ery or design, Al techniques have been employed for rapid identification
of the bioactive molecules among millions of compounds, assessment of
the kinetic curves and data parameters in the chemical reactions, and
guiding the traditional experiments [178] that may significantly save
time and costs. Moreover, machine learning methods help to model
the metabolism of drugs including their interactions with metabolic en-
zymes or relationships between the chemical structures of drugs and
their biological fates, and metabolic endpoints [179] that may result in
more accurate prediction of metabolic fates and potential toxicities of
new drug candidates. In order to classify drug candidates as substrates
of cytochrome P450, an ANN model has enabled development of an au-
tomated algorithm for evaluation of the metabolic transformations of
compounds [180].

3.1. Peptide synthesis

Remarkable advances in biotechnology and peptide synthesis have
provided the possibilities to benefit from the pharmacological effects
of peptides. In this context, a variety of peptides have been synthesized
and subjected to the screening procedures and analysis of the biological
data by QSAR models [181]. An ANN method has been proposed for
evaluation of the organ-targeting peptides which were selected from a
random phage-peptide library using phage display technique [181].
Trained neural network included a multilayer system of fully connected
neurons capable of mapping input dataset to the corresponding output
dataset. Training and test sets statistics demonstrated the suitability of
ANN models for selecting organ-targeting peptides from large peptide
libraries [181]. ANNs have also been applied for accurate prediction of
peptide binding to human leukocyte antigens and targets of immune re-
sponses [182].

3.2. Identifying novel antimycobacterial drugs
In recent years, virtual screening techniques for identifying new

antimycobacterial drugs has attracted a growing interest [183]. In an at-
tempt to reduce the risk of multidrug-resistant tuberculosis and identify

more efficient antimycobacterial drugs, an ANN model has been devel-
oped for introducing efficient descriptors for drug design [183]. For con-
structing the model, feedforward network was trained for performing a
nonlinear regression between the minimum inhibitory concentrations
and clustered descriptors. Several structure databases were analyzed
using the cheminformatics tools capable of identifying the molecules
as candidates for experimental assays [183]. In order to identify the ef-
fective compounds against the mycobacterium tuberculosis, a database
consisting of various antimycobacterial agents was created followed by
evaluation of the molecular descriptors. The model predicted the mini-
mum inhibitory concentration with MSE = 0.0002 and R?> = 0.98 [183].

3.3. Predicting the effectiveness of drug dosing and delivery methods

A data-driven predictive system has been developed using a
machine learning framework capable of modeling the pathogen-drug
dynamics and predicting the effectiveness of dosing patterns and drug
delivery methods [184]. The method was experimentally validated for
cell-drug interaction using metronidazole and Giardia lamblia and an
accuracy of 85% was obtained for system performance [184].

3.4. Rapid identification of the bioactive agents and monitoring of drug
release

Because of their capability of pattern recognition, modeling, and pre-
dictions, ANNs can be applied in pharmaceutical research areas includ-
ing the modeling or development of drugs, optimization of their
pharmacological profiles, and prediction of the structure and function
of proteins [185]. In this context, ANNs have been applied for detection
of amino acids with similar structures and determining concentrations
of chiral samples or enantiomeric excess [46,185]. For quantification of
two forms of ranitidine-HCI, ANNs have enabled rapid identification of
the form 1 in a multi-component tablet [186]. An ANN model has
been applied for simultaneous spectrophotometric estimation of the
selective serotonin reuptake inhibitors, sertraline and fluoxetine,
in the biological fluids and pharmaceutical formulations [187].
Three-layer feedforward neural networks using the backpropagation
algorithm have been used for constructing and testing the models.
Calculated relative standard deviation for fluoxetine and sertraline
(1.06 and 1.33, respectively) in tablet samples revealed a good agree-
ment between the predicted and experimental values [187] indicating
the suitability of the combination of ANN models and spectrophotomet-
ric methods for determination of components in the pharmaceutical
formulations. This kind of method can be a suitable alternative to the ex-
pensive and time-consuming chromatographic methods.

In general, the process of drug delivery system design is associated
with several challenges such as predicting the relationship between
the formulation parameters and response or treatment outcome, and
occurrence of the unexpected phenomena [188]. Based on drug-
carrying ability of erythrocytes, microchips are promising tools for mon-
itoring the controlled delivery of antithrombotic drugs and targeting
thrombi leading to the reduced risk of stroke or other life-threatening
conditions [189]. For automated management of the arterial and venous
circulation, fuzzy logic-based automated drug delivery system has been
designed and validated [190]. Fuzzy decision analysis and fuzzy hemo-
dynamic management modules were used to assess patient’s condition
and regulate arterial and pulmonary pressures and cardiac output, re-
spectively. The system provided a faster response and more effective
hemodynamic regulation [190]. Application of the supervisory-fuzzy
rule-based adaptive control system is a promising approach for multiple
drug hemodynamic control [191]. In this context, a control device ap-
plying an expert-system approach for two input-two output system
has been designed by a mathematical model of the hemodynamic re-
sponse [191]. Infusion rates of dopamine and sodium nitroprusside
were considered as inputs and controlled variables included the cardiac
output and mean arterial pressure. Dual mode control structure
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included the coarse and fine control modes to ensure sufficient drug de-
livery. Based on the findings, hemodynamic variables were maintained
within the limits [191].

Fuzzy control drug delivery systems are usually designed via appli-
cation of the experts' knowledge without implication of the explicit
mathematical models [190,191]. In pigs, mean arterial pressure has
been successfully controlled by real-time fuzzy controller [192] suggest-
ing the usefulness of fuzzy controller in the management of arterial
pressure in the clinical settings. Regarding the modeling of bimodal
drug delivery, MLP feedforward network has been applied for modeling
the effects of causal factors on in vitro release profile of theophylline
[193]. Besides the experimental datasets, several training algorithms
were applied for training of ANN which contained a single hidden
layer with four nodes. Assessment of the performance and prediction
ability of the training algorithms represented the gradient descent
backpropagation algorithms as the best training algorithms for model-
ing and prediction of drug release profiles [193]. Implementation of
batch backpropagation revealed that enhancement of coating levels
and reduction of the amount of chitosan-pectin complex result in the
retarded drug release. As compared to another causal factor, coating
weight gain, chitosan-pectin in the coating solution played a more influ-
ential role in determining dissolution profiles [193].

In order to provide suitable matrix erosion and bioadhesivity for
an intravaginal drug delivery device, ANN models and molecular
mechanics simulations have been applied for development of the
bioadhesive intravaginal drug delivery devices for controlled delivery
of therapeutices against the vaginal infections [194].

Using ANNs, physicodynamic phenomena controlling the diffusion
coefficients of loaded drugs in delivery systems and the most influential
variable/s on diffusivity can be identified [195]. An ANN model has been
developed to analyze the quantitative relationships between the physi-
ological variables and release profile from a controlled drug delivery
system including an intravaginal gel-type formulation for preventing
the sexually transmitted diseases [195]. The effects of extrinsic/intrinsic
and formulation variables on the diffusivity of sodium dodecyl sulphate
were evaluated by ANNs. Based on the release profile of drug, a non-
linear relationship between the physiological/formulation variables
and diffusivity was found [195]. In comparison to the formulation or ex-
trinsic variables, the secretion rate and pH of the vaginal fluid played
more influential roles in determining the diffusion coefficient of sodium
dodecyl sulphate from the delivery system and vaginal fluid pH was the
most dominant factor in determining the diffusion coefficient of drug
[195]. Furthermore, conditions of the external exposure proved to be
more significant than the effects of formulation variables on the diffu-
sion coefficient of drug. ANN tool helped to successfully predict the
effects of intrinsic variables on drug release profile [195].

Using an ANN model, the release of doxorubicin from Pluronic P-105
micelles has been modeled [196]. The model revealed that more
efficient drug delivery would occur at low frequencies and copolymer
concentrations and enhanced power density, while, thermal effects do
not play an important role [196]. ANNs by providing accurate predic-
tions and optimizing the operating conditions, have been represented
as reliable tools for modeling and prediction of the acoustic release of
drugs from the polymeric micelles and optimizing the ultrasound appli-
cation for targeted drug release [196,197].

ANNs applied to IVIVC (ANN-IVIVC) may overcome a variety of
problems associated with classical regression methods [58-62]. Regard-
ing the extended-release formulations, the abilities of a number of ANN
configurations for determining IVIVC have been demonstrated [62].
Assessment of the predictive power of ANNs revealed that many of
the network configurations successfully predicted mean plasma con-
centration profile. In this context, ANN-IVIVC has been proposed as a re-
liable tool for establishment of complex relationships and interpolation
of pharmacokinetic parameters [62].

Dynamic lipolysis model (DLM) is useful for assessment of the novel
lipid-based formulations and prediction of their behavior in vivo [198].

Using the combination of neuro-fuzzy networks and DLM enables pre-
diction of the plasma concentration profiles of drugs [198]. The ability
of DLM for simulation of the absorption of probucol from lipid-based
formulations has been assessed by neuro-fuzzy networks [198]. Based
on the findings, the rate and extent of probucol release from the oil for-
mulation were significantly lower than those of self-emulsifying drug
delivery system. Adaptive neuro-fuzzy modeling along with IVIVC tool
showed efficient predictive performance as well as the potential to cre-
ate complex relationships and interpolate pharmacokinetic parameters
[198]. These findings represent the suitability of the combination of
DLM, adaptive neuro-fuzzy modeler, and IVIVC tool for prediction of
the behavior of lipid-based formulations.

As a complementary tool to the conventional methods, ANN can be
used for assessment of the controlled drug release [50,63]. Mathemati-
cal models have been used for simulating the release profiles of rho-
dium (II) butyrate complexes and hydrocortisone from bioceramic
and biodegradable matrices, respectively [50]. Drug loading, saturation
solubility, and diffusion coefficient were predicted with a relative
error of <1% suggesting the usefulness of ANN models for predicting
the experimental conditions and providing controlled drug release for
biodegradable polymers or bioceramic matrices [50].

Based on an intelligent modeling tool, generalized fuzzy neural net-
work, an adaptive modeling and control scheme has been presented for
automated drug delivery and regulation of the post-surgical blood pres-
sure [199]. Following training, the model was evaluated for online adap-
tive control of the system. The adaptive controller implicated a
feedforward generalized fuzzy neural network with a linear feedback
loop capable of achieving a real-time control. Simulation studies
showed the abilities of adaptive fuzzy neural method for modeling sys-
tem uncertainties and nonlinearities and estimation of the effects of
drug on blood pressure [199]. Following evaluation of the fuzzy logic
ability to adapt the parameters of pharmacodynamic and pharmacoki-
netic model-based controller for delivery of pancuronium, practicality
of the approach for acquiring a deeper knowledge about the character-
istics of individual response to drugs has been verified [200].

A trained ANN model along with pharmacokinetic simulations have
been used for designing controlled release dosage forms [201]. Formula-
tion factors and cumulative percentage of drug released at various time
points were selected as inputs and outputs, respectively [201]. ANN
models may also be applied in the pre-formulation stage of controlled
release oral dosage forms [50,63]. Using CAD/Chem software, an ANN
model has been constructed to predict physicochemical properties of
the controlled release matrix tablets [202]. Glass transition tempera-
tures, moisture content of polymers, water-uptake profile, and viscosi-
ties of hydrophilic polymers have been accurately predicted by the
model [202] suggesting the usefulness of trained ANN models for ac-
quiring more accurate information in the pre-formulation stage.

3.5. Optimizing drug release from matrix tablets

Al methods may be applied to optimize drug release from the matrix
tablets prepared by direct compression method [54,203]. Dynamic and
static ANNs have been developed for modeling the dissolution profiles
of various types of matrix tablets [203]. GA optimizer tool or Monte
Carlo simulations were used for optimization of ANNs. ElIman dynamic
neural networks and decision trees accurately predicted dissolution
profiles from the lipid and hydrophilic matrix tablet formulations with
controlled release profiles [203]. In comparison to the most frequently
used static network, MLP, Elman neural networks proved to be more
successful for modeling of drug release profiles in different types of ma-
trix tablets [203]. Using MLP with feedforward backpropagation
method, metformin HCl sustained release matrix tablets with optimized
in vitro release profile have been developed [204]. Input and output var-
iables were applied for network training and leave-one-out method was
used for model validation using several trial formulations in which the
slope and R? values were assessed to identify the final optimized
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model. Difference and similarity factors demonstrated no difference be-
tween MLP-predicted and experimentally observed drug release profile
for optimal formulation [204] indicating the method suitability for
modeling and optimization of the sustained release tablet formulations.
In order to predict formulations of sustained-release tablets, solubility
and ratios of hydroxypropyl methylcellulose/dextrin for several tablet
formulations and their accumulation and in vitro release at various sam-
pling times have been used as ANN model input and output, respec-
tively [205]. ANNs have also been utilized for development of the
controlled release tablets of carvedilol and no significant difference
was observed between the experimental values and ANN-based predic-
tions [206]. Moreover, ANNs have been applied for selecting the most
appropriate formulation and processing variables for predicting the dis-
solution profiles of enteric-coated sustained release minitablets [207].

In order to develop controlled-release formulations with suitable
dissolution profiles and bioavailability and predict their in vitro and
in vivo behaviors, pharmacokinetic simulations and ANNs have been
employed and a good agreement was found between ANN-predicted
and experimental findings [201] indicating the usefulness of ANN
models for development of formulations with suitable physicochemical
properties. A trained ANN model has been used to predict optimal com-
positions of tablet formulations based on the proper dissolution-time
profiles in vitro and release profiles in vivo [201]. In sucrose esters matrix
tablets, ANNs have enabled prediction and control of drug release and
provided a deeper knowledge about the system [208]. Self-organizing
map (an ANN type) and MLP networks facilitated evaluation of the
interactions between the variables and prediction of drug release char-
acteristics, respectively [208]. Furthermore, data clustering by self-
organizing map ANNs helped to identify the correlations between the
input and output variables. Based on the findings, sucrose esters, tensile
strength, and tablet volume, but not tablet porosity, showed the highest
impacts on drug release behavior [208]. In this respect, MLP and
self-organizing map neural network approach have been suggested as
suitable tools for optimizing multivariate systems and modeling the
controlled release formulations [208].

Using an ANN model, formulation and release profile of time-
dependent tablets have been optimized [209]. Backpropagation neural
network technique was applied for modeling and optimizing of tablets.
In the optimized formulation, drug release data were close to ANN-
predicted release pattern [209] suggesting the usefulness of ANN-
based methods for designing and optimizing complex dosage forms.

3.6. Making correlation between the formulation factors and release
profiles

Besides prediction of dissolution and release profiles, ANNs are use-
ful for optimizing modified-release products including the solid dosage
forms [49,210,211]. GRNNs and connectionist models help to predict
drug stability and release profile [63,65,211,212]. Using ANNS, a semi-
empirical mathematical model capable of predicting the released drug
amount from solid lipid extrudates has been developed [213]. System
inputs included the diameter and length of the extrudates and dissolu-
tion times and the amount of released diprophylline was considered as
output. Using the modified Weibull equation, it has been revealed that
enhancement of the extrudate diameter results in reduced release rate
[213]. ANNSs have also been used to design the optimal formulations of
sustained release dosage forms and predict their dissolution profiles
[214]. GRNN has been applied for designing the extended-release aspi-
rin tablets [215]. In order to obtain optimal aspirin tablets, optimized
GRNN model has been applied for prediction of formulation characteris-
tics and process factors. Based on the difference and similarity factors
(f;, and f>), there was no difference between GRNN-predicted and
experimentally-observed drug release profiles [216] indicating the suit-
ability of GRNN for modeling extended-release tablets. Using MLP neu-
ral network and backpropagation algorithm, diclofenac sodium
extended-release tablets have been optimized [217]. The amounts of

Carbopol® 71G and Kollidon® K-25 were selected as network inputs
and in vitro dissolution time profiles were considered as outputs. Calcu-
lated similarity and difference factors revealed no difference between
the experimental and predicted drug release profiles indicating the suit-
ability of MLP for prediction of drug release and its applicability for
modeling and optimizing sustained-release tablet formulations [217].
Dynamic neural networks capable of modeling dissolution profiles and
more precise prediction of drug release profile (as compared to MLP
and static networks), have been applied for modeling the release of
diclofenac sodium from polyethylene oxide controlled release matrix
tablets [54]. Networks with different topologies were established for
obtaining accurate prediction of release profiles from the test formula-
tions. Compression force and polymer fraction were demonstrated as
the most dominant factors on drug release profile [54]. Furthermore,
polyethylene oxides with high molecular weights proved to be more
suitable for development of the controlled release dosage forms. Simi-
larity and difference factors demonstrated the ability of dynamic net-
works for accurate predictions [54]. GRNN has been applied for
development of multiunit particulate system for controlled delivery of
diclofenac sodium, modeling the effects of causal factors on the release
profile of drug from compressed matrix pellets, and obtaining the opti-
mal formulation [66]. Correlation plots of the obtained and predicted
values of drug release demonstrated the suitability of GRNN model (R?
~ 0.98). Furthermore, the percentage of polymer was recognized as
the controlling factor of drug release from the compressed matrix pel-
lets [66].

Combination of RSM and ANN methods has been used to optimize
the formulation of isradipine-contained osmotic tablets [218]. Differ-
ence between the predicted and observed dissolution profiles of the op-
timized formulation was within the experimental error limits.
Furthermore, calculated similarity and difference factors revealed no
difference between the predicted and experimental drug release pro-
files [218], indicating the suitability of ANN models for obtaining suit-
able dissolution profiles and development of the controlled release
formulations. For optimizing salbutamol sulfate osmotic pump tablets,
an ANN model has been developed in which the causal factors included
the amounts of hydroxypropylmethylcellulose, polyethylene glycol
1500 in coating solution, and coat weight. The average drug release
rate and correlation coefficient of the amount of drug released were
considered as the response variables [219]. Using trained ANN model,
optimal formulation factors were acquired. Following the preparation
and in vitro test of the optimized formulation, the release rate and cor-
relation coefficient of the optimized formulation showed a good agree-
ment with predicted effects [219]. ANN and design expert system have
been applied for preparing glipizide push-pull osmotic pump tablets.
Besides performing dissolution testing, the range of formulation factors
and procedure were optimized by ANN [220]. ANNs have also been
employed to optimize nimodipine zero-order release matrix tablet for-
mulation [221]. For all responses, feedforward backpropagation ANN
demonstrated better fit than multiple linear regression (MLR) models.
Furthermore, estimation of the similarity factor confirmed the ability
of ANN' s to increase prediction efficiency [221].

In order to improve the accuracy of ANN models in pharmaceutical
research area, software for parameter optimization has been developed
which enables estimation of suitable ANN parameters that might be of
great significance for development of the optimal formulations includ-
ing the sustained release tablets [222]. Short half-life of melatonin, an
effective agent against the sleep disorders, necessitates development
of the extended-release tablets. Meanwhile, mimicking the plasma
levels of melatonin appears quite challenging [223]. An ANN model
has been applied to optimize melatonin release from hydrophilic poly-
mer matrices. The model proved to be useful for optimizing the compo-
sition of extended-release melatonin tablets with suitable dissolution
profiles [223]. ANN models have also been employed to predict the re-
sponse variables, release parameters, and plasma concentrations of the-
ophylline tablets. Findings demonstrated a good agreement between
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ANN-predicted and experimental values [224,225]. Using ANNs, a com-
parative analysis of the release profiles and mucoadhesivity of buccal
tablets of propranolol hydrochloride was performed and the polymers
for optimized formulation were identified [226]. For obtaining in-
creased mucoadhesion, polymers were selected by screening procedure
and application of feedforward backpropagation ANN model. MLP net-
work accurately identified the most significant input variables and suit-
able polymers for optimizing multipolymeric propranolol buccal tablets.
PEG exhibited the most significant effect on the mucoadhesivity and
mean dissolution time. MSE of 0.002 demonstrated high efficiency of
the trained model and a comprehensive knowledge was obtained
about the behavior of polymeric matrix tablets [226] that might be help-
ful for optimizing multipolymer drug delivery systems. Using several
ANN software programs for prediction of dissolution profiles of
controlled-release tablets, the best overall prediction has been shown
by NeuralShell2 [51].

3.6.1. Beads, pellets, and microspheres

Several ANN models have also been developed to predict dissolution
profiles of controlled release particulates including the beads, pellets,
and microspheres [227-233]. A model constructed by CAD/Chem soft-
ware has been applied for modeling the effects of formulation variables
and process on the release profile of verapamil from the multi-
particulate beads. Drug release data of the optimized formulations
were in good agreement with those predicted by ANN model [227].
An ANN model has been used for assessment of the impact of process
parameters on the entrapment of papain in cross-linked alginate
beads leading to the improved stability and site-specific delivery
[228]. Using optimal conditions, the neural network was constructed
for prediction of the experimental matrix. Dissolution studies in the
pH range similar to those in human gastrointestinal tract showed that
alginate beads can be applied for delivery of papain to the small intes-
tine. Accelerated and long-term stability evaluations revealed a signifi-
cant improvement in the shelf-life of papain entrapped in alginate
beads [228], indicating the usefulness of method for development of
the stable beads capable of site-specific drug delivery.

ANNs provide useful information about the pellet properties and
identify the relationships between the formulation characteristics, pel-
letization mechanisms, and key process variables [229]. Using neuro-
fuzzy systems for prediction of the aspect ratio of pellets and character-
izing preparation parameters [229] might be a promising approach for
further formulation procedures. Using MLP neural network, dissolution
profile of matrix-controlled release theophylline pellets has been pre-
dicted. High f, values (> 60) indicated the similarity of ANN-predicted
dissolution profiles and those obtained from the experiments [49].
Regarding the granulated pellet-containing tablets, pellet size, Eudragit
FS 30D, hardness of tablets, and coating weight gain have been identi-
fied as influential factors for evaluation of tablet properties including
the release behavior. High correlation coefficients between ANN-
predicted and experimental values demonstrated the suitable predic-
tion power of ANNs [230].

Aspirin-loaded calcium alginate floating microspheres have been
optimized by ANNs and RSM in which the amounts of formulation ma-
terials and release and floating rate of microspheres were used as inputs
and outputs, respectively. As compared to RSM, ANNs more accurately
predicted in vitro drug release profile [231]. In the formulation of verap-
amil hydrochloride-loaded polymer microspheres, pH of the external
aqueous phase has been shown as the major determinant of incorpora-
tion efficiency and drug release behavior [232]. ANN and factorial anal-
ysis as multivariate methods were applied for assessing the impact of
combined effects of external phase pH and other parameters, initial
drug loading, and polymer concentration on the properties of polymer
microspheres. Besides better fitting abilities, ANN model demonstrated
less biased and more precise predictability than factorial analysis [232].
In this context, ANN models have been successfully applied for multi-
variate modeling of the release or encapsulation of ionizable drugs

from hydrophobic polymer microspheres. For preparation of the acrylic
microspheres for controlled drug release, an ANN model has been de-
veloped for evaluation of the effects of preparative variables during
the solvent evaporation method [233]. Input variables included the
ratio of polymers, stirring rate, and concentration of dispersing agent.
Size of the microspheres and Tg3 24 Were selected as response variables.
ANN model showed higher predictability than MLR [233], suggesting
that for evaluation of the formulation and process parameters, ANN
models are suitable alternatives to the conventional regression
methods.

3.6.2. Solid dispersions

Preparation of the solid dispersions is a promising approach for im-
provement of drug solubility [234]. Combination of ANNs and mixture
experimental design has been applied for development the solid disper-
sions [234]. For improving the dissolution rate of carbamazepine,
carbamazepine-Soluplus®-poloxamer 188 solid dispersions were
prepared by solvent casting method. The effect of solid dispersion com-
position on dissolution rate of carbamazepine was assessed by three-
layer feedforward MLP network and mixture experimental design. The
relationship between the components of solid dispersion and percent-
age of released drug was well described by the mixture experimental
design and ANN model, meanwhile, MLP network demonstrated better
predictability than the mixture experimental design [234]. For prepara-
tion of PVP/PEG mixtures as carriers for development of drug solid dis-
persions, a feedforward backpropagation ANN with logistic sigmoid
activation function has been applied to make correlation between the
factors and dissolution characteristics and optimize dissolution rate
[235]. ANNs demonstrated suitable prediction power and the prepared
solid dispersions showed long-term physical stability [235].
Nimodipine-PEG solid dispersion has been used for development of
the effervescent controlled-release floating tablet formulations [236].
Combination of the experimental design and machine learning algo-
rithms including the genetic programming and ANN demonstrated suit-
able prediction power during the optimization process. Furthermore,
simultaneous erosion and swelling were identified as the major mecha-
nisms of the release of active ingredients [236].

3.6.3. Implants

For management of the postsurgical problems associated with
cochlear implantation, coating of the cochlear implants has been sug-
gested for topical delivery of drugs against the inflammation or infec-
tions [237]. An ANN model has been applied for prediction of the
formulation parameters and release profile of dexamethasone from
the cochlear implant coatings [237]. For obtaining an appropriate drug
release profile, the ability of ANN model to determine the optimal levels
of formulation parameters, was evaluated. Besides providing shorter
formulation design process, drug release profile from the implant device
was accurately modeled by ANN model and the results were so close to
the experimentally obtained values indicating the model effectiveness
[237].

3.64. Liposomes

Over the last decade, application of the echogenic liposomes for de-
livery of the chemotherapeutics has attracted a growing interest
[238,239]. Since multiple drug resistance can be overcome by controlled
drug release, ANN-based model predictive controller has been proposed
for constant release of the chemotherapeutic agent and maintaining an
appropriate concentration at tumor site [238] that may reduce the risk
of multidrug resistance and shorten treatment duration. In order to de-
sign and optimize formulation parameters of leuprolide acetate-loaded
liposomes, ANNs and MLR method have been compared [239]. For de-
termining optimal ANN structure, various training sessions were carried
out with different number of nodes in hidden layer. Nonlinear differen-
tial transfer functions was applied for predicting the percentage of
drug entrapment in liposomal formulations. Based on the findings,
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application of the feedforward backpropagation network and MILR is a
promising approach for predicting appropriate composition for a spe-
cific response and acquiring a deeper knowledge about the effects of
formulation parameters and preparation process on the product prop-
erties [239]. Comparison of the predicted and experimental data re-
vealed no statistically significant difference. Furthermore, optimal
ANN showed higher predictive power than MLR method because of
the lower values of normalized error and higher precision level [239].

3.6.5. Transdermal formulations

An ANN model has been developed for optimizing transdermal
ketoprofen hydrogel [240]. Optimal values of the response variables
were applied for optimizing gel composition. The results obtained
from the optimal formulation showed a suitable agreement with those
predicted by ANN model [240]. For transdermal delivery of melatonin,
ANNs and RSM have been applied for optimizing the vehicle composi-
tion [241]. Transdermal route was selected to prevent the remarkable
hepato-gastrointestinal first-pass metabolism of melatonin and main-
tain its steady-state plasma concentrations for appropriate time periods.
Since melatonin is unable to pass through the dense lipophilic matrix of
stratum corneum, several solvents and their mixtures were used for
enhancement of melatonin flux and reduction of lag time [241]. Multi-
layer feed forward backpropagation network was developed for identi-
fying the best solvent mixtures for a particular response and assessment
of the inter-relativity between the responses. Experimental findings
were comparable to the predicted ones [241]. Integrating the neural
networks, GAs, and theory-based quantitative structure-property rela-
tionship models, a screening algorithm has been developed to identify
the chemical penetration enhancers for transdermal drug delivery
[242]. Besides assessment of melatonin permeability, enhancers were
evaluated for their toxicity. Results demonstrated the suitability of algo-
rithm for development of the skin permeation enhancers with im-
proved performance [242].

Regarding the potential of neural network-based intelligent learning
system for prediction of the release profiles of drugs, an experimental
study regarding the transdermal iontophoresis has been conducted to
assess the usefulness of a neural network model, Gaussian mixture
model (GMM), for modeling and prediction of drug release profiles
[243]. Using face-centered central composite design (CCD) approach,
several tests were systematically designed for simultaneous evaluation
of the effects of process variables during iontophoresis. Combination
of GMM and face-centered CCD has been suggested as a useful intelli-
gent learning system for prediction of the release profiles of drugs [243].

3.6.6. Hydrodynamically balanced systems, suppositories, pulmonary
delivery

ANNSs have been applied as modeling tools for predicting the release
profiles of drugs from hydrodynamically balanced systems [244]. Based
on the chemical structure of drugs and formulation description, ANNs
helped to accurately predict the release profiles of various drugs and
identify the key variables affecting drug release [244]. An ANN approach
along with modeling and simulation of the compartment-based models
have been applied for assessment of differences between the slower and
faster release of paracetamol from the layered excipient suppositories
[245]. It has been revealed that the extent of drug absorption is en-
hanced by absorption-increasing effect of mono-di-glycerides and
liver bypass mechanism [245]. For designing the pulmonary drug deliv-
ery systems, two-layer perceptron feedforward backpropagation ANNs
have been successfully used for simulating aerosol behavior [246].

3.6.7. Controlled-release formulations

Application of ANNs and fuzzy logic algorithm for designing of
sustained release formulations helps to analysis the effects of formula-
tion components on the release characteristics and optimize drug
formulations [51,204,207,209]. In this context, controlled release
formulations of clopidogrel have been developed using fuzzy logic

algorithm and ANN analysis for determining the effects of tablet compo-
nents on the release characteristics [247]. Following development of the
complex dosage forms and designing controlled-release formulations
by pharmacokinetics simulations and ANNs, a good agreement has
been found between the experimental findings and ANNs-based predic-
tions [201,206].

Based on the content of separate components in colloidal delivery
systems and nature of co-surfactants, GAs and ANNs can be used to pre-
dict the phase behavior of this type of delivery systems [248]. GA and a
supervised ANN have been used for selecting the key molecular descrip-
tors and making correlation between the selected descriptors and
weight ratio of the system components and phase behavior, respec-
tively [248]. Findings have shown the influential role of the chemical
compositions, molecular volume, lipophilic-hydrophilic balance, length
of the hydrocarbon chain, and hydrocarbon volume of co-surfactants.
The genetic neural network model predicted the phase behavior of the
colloidal delivery systems with high accuracy [248], suggesting the suit-
ability of this approach for evaluation of the co-surfactants in pharma-
ceutical formulations.

3.6.8. Emulsions

Appropriate preparation of the emulsions necessitates a high level of
expertise and technical knowledge. Based on the limitations of RSM in-
cluding the poor estimation of the optimal emulsions [249], ANNs capa-
ble of optimizing and modeling the complex relationships between the
formulation parameters and their effects on the quality of final product,
have been applied for preparation of the stable emulsions [249]. In a
study conducted by Kumar et al., ANNs have been used for formulating
stable oil-in-water emulsion and optimizing the concentration of a fatty
alcohol [250]. Input data included the variables of lauryl alcohol concen-
trations and time, and zeta potential, particle size, viscosity, and conduc-
tance were considered as outputs. Based on the validation experiments,
ANN-predicted values were in good agreement with experimental data
[250]. ANNs have also shown promising accuracy in prediction of the
microemulsion type from its composition [251]. Using the combination
of evolutionary ANNs and GA, internal structures and types of
microemulsions have been predicted with high accuracy [251]. An
ANN model has been developed to predict stable microemulsion formu-
lation containing isoniazid and rifampicin for oral delivery [252]. Data
from several pseudoternary phase triangles containing the mixture of
surfactants and oil component were applied for training, testing, and
validation of the ANN model. Using the radial basis function network ar-
chitecture, weight ratios of the individual components were consistent
with observed phase behavior. The obtained microemulsion formula-
tion with improved stability was capable of targeted delivery of both an-
tituberculous drugs during the continuation phase suggesting the
formulation effectiveness to overcome the problems associated with
combination of drugs with different solubilities [252].

3.6.9. Microparticles

In order to overcome dissolution rate-limiting step, benznidazole
chitosan microparticles have been prepared by coacervation method
followed by application of an ANN model for optimizing the formulation
[253]. Multi-response optimization was applied for obtaining the
maximal yield, encapsulation efficiency, and dissolution rate, and the
minimal size. ANN-predicted optimum values were in agreement with
experimental findings indicating appropriateness of ANNs for develop-
ment of the optimal benznidazole chitosan microparticles [253]. Using
ANNSs capable of being trained online, an adaptive drug delivery system
has been developed for more efficient treatment of infectious diseases
[254].

3.6.10. Nanomaterials

Evaluation of the parameters which affect nanoparticle size, loading
efficiency, or cytotoxicity might be helpful for designing more efficient
drug delivery systems [18,126,127]. ANNs have been applied to predict
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the physicochemical properties of nanoparticles with theranostic im-
portance against a variety of disorders [255-261], analysis complex
nonlinear relationships and factors affecting the stability or size of nano-
particles, or design the models for identifying the relationships between
the factors affecting the development of controlled-release drug deliv-
ery systems [262-267]. Besides demonstrating input-output interac-
tions, ANNs can be used for modeling and identification of key
parameters which affect the size of nanoparticles in a multidimensional
space [266,267]. For preparation of the biodegradable nanoparticles of
tri-block poly(lactide)-poly(ethylene glycol)-poly (lactide) (PLA-
PEG-PLA) copolymer as drug carrier, an ANN model has been developed
for identifying the factors affecting the nanoparticle size [268]. Three-
layer feedforward backpropagation ANN was applied for modeling the
preparation of nanoparticles and the best predictive model was selected
based on the appropriate R? and MSE values for training, test, and vali-
dation data. Among the processing factors, polymer concentration was
found to be the most influencing factor [268]. For optimizing the formu-
lation of polymer-lipid hybrid nanoparticles for controlled delivery of
verapamil hydrochloride and assessment of the effects of formulation
factors, optimization and modeling were performed based on the spher-
ical central composite design [269]. Multi-objective optimization of
nanoparticles was performed using the validated ANN models and con-
tinuous GAs. The obtained nanoparticles showed suitable properties
such as drug loading efficiency of 92% and mean particle size of
~100 nm which are desirable for lymphatic transport after oral adminis-
tration. Predicted response variables were in good agreement with ex-
perimental findings. Comparing the predictive performance of ANN
models and RSM revealed the better generalization and recognition
ability of ANNs [269]. Combining factorial design, ANN, and continuous
GAs is a promising approach for multi-objective optimization and
modeling of nanoformulations with suitable properties [269,270].
Using ANN, formulation parameters of chitosan-tripolyphosphate nano-
particles have been optimized in order to control nanoparticle size and
improve the process yield at a novel pH [270]. Multilayer feedforward
backpropagation neural network was applied for modeling the complex
nonlinear relationship between the inputs and outputs and presenting
outputs as 3D graphs. ANN architecture included three layers and trial
and error approach was carried out for modeling. Various training pa-
rameters were used for obtaining appropriate predictive network and
two approaches were applied to prevent over training of network.
Concentration of sodium tripolyphosphate was found to have the
greatest impact on the particle size and yield. Furthermore, successful
interaction of chitosan and sodium 2q nanoparticle formation was con-
firmed by differential scanning calorimetry and Fourier transform-
infrared spectroscopy indicating the ability of ANNs to predict size and
yield of nanoparticles and identification of the influential factors [270].
In this respect, multivariate trained models capable of providing a
deeper knowledge about the parameters affecting the physicochemical
properties of nanoparticles and predicting or optimizing the processing
conditions are promising tools for obtaining improved theranostic out-
comes [270].

Regarding the albumin-loaded chitosan nanoparticles prepared by
polyelectrolyte complexation technique, ANNs have been applied for si-
multaneous determination of the effects of independent variables on
dependent ones [271]. Based on the findings, material concentrations
are the most important factors affecting dependent variables,
i.e., loading efficiency and cytotoxicity. In this sense, optimizing inde-
pendent variables is necessary for obtaining suitable nanoparticles
[271]. ANN models have also been applied for constructing a correlation
between the entrapment efficiency of solid lipid or polymeric nanopar-
ticles and prediction of the binding energy of drugs [170].

In order to overcome the problems associated with the application of
nanoemulsions, ANNs have been applied for modeling the experimen-
tally obtained data, evaluation of the factors which affect the cytotoxic-
ity of nanoemulsion, and obtaining stable nanoemulsion system with
reduced cytotoxicity [272]. Based on model findings, surfactant and oil

concentrations were the dominant factors affecting the nanoemulsion
stability and cytotoxicity, respectively. In this context, ANNs have been
shown as promising tools for describing the effects of nanoemulsion in-
gredients on the stability and cell viability [272]. ANN models are also
helpful for identification of the key factors affecting the particle size of
Nano emulsions [273]. An ANN model capable of modeling the formula-
tion and processing experimental data related to budesonide
nanoemulsion, has identified the parameters which affect the particle
size. Total amount of energy used during the nanoemulsion preparation
was recognized as the main factor affecting the particle size of
nanoemulsion [273].

Because of the multivariate nature, development of drug loaded
nanospheres is an expensive and time-consuming process [274]. ANN
and GA have been used to simulate and optimize the fabrication process
of agar nanospheres. GA and ANN proved to be more efficient tools than
RSM for modeling and optimizing the manufacturing process of
bupropione-loaded agar nanospheres and estimation of their physico-
chemical properties [274].

In designing the efficient nanoformulations, controlled release pro-
file and targeted delivery are the essential factors which should be
taken into account [127,128]. In this sense, designing the functional
and specific linkers which affect the stability, release profile, and effi-
ciency of nanotherapeutics [275,276] might be of critical importance.
Application of advanced linker technologies including the simulation
and modeling techniques, web-based systems, GAs, or GA/fuzzy hybrid
algorithms helps to identify suitable linker candidates and develop
novel linker-drug conjugates with enhanced efficiency and reduced tox-
icity [276-278].

Using ANNSs, formulation of the nanoparticulate fingolimod delivery
system has been optimized [279]. The amounts of polyvinyl alcohol,
poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and fingolimod, and
time of drug release have been considered as input values. Output
data included the polydispersity index, particle size, entrapment effi-
cacy, loading capacity, and percentage of drug release from nanoparti-
cles. Feedforward backpropagation was applied to assess the effect of
time on the percentage of drug release and the optimal formulation
was selected by Levenberg-Marquardt algorithm which showed less
prediction error than other training algorithms [279].

4. Application of nanorobots for drug delivery

Development of the micro- and nano-electromechanical systems
has provided the possibility of fabricating implantable robots for
performing a variety of tasks including the controlled delivery of
drugs or genes [280,281]. Because of the remarkable advances in nano-
technology, increasing interest has been attracted towards the develop-
ment of nanorobots which are integrated with internal or external
power supply, sensors, and Al [282,283]. These smart structures are
capable of information processing, signaling, sensing, actuation, com-
munication, performing the biological tasks at cellular levels, and local-
ized delivery of drugs leading to the improved efficiency and reduced
side effects of the conventional therapeutics [282-284]. Nanorobots
hold great promise for detection of toxic agents and theranostic applica-
tions [285-288]. Bionanorobot rule structure includes the navigation
rules, collision avoidance, target identification rule, detection and at-
tachment rule, drug delivery rule, mission complete rule, and activation
of flush-out mode leading to the excretion of bionanorobots
[281,283,285,287]. In molecular manufacturing automation, application
of Al provides the possibility to control the behavior or motion of
nanorobots [289,290]. Using the simulation and modeling techniques,
collaborative and autonomous behaviors of nanorobots or
nanorobotic-based drug delivery systems have been effectively simu-
lated [291]. Following the intravenous injection, bionanorobots are re-
leased into the bloodstream and their swarming and swimming
behaviors are facilitated by bio-actuation mechanisms [292,293]. Swim-
ming microrobots for controlled delivery of drugs, transient microrobot
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system for targeted drug delivery using touch- or nano-communication
frameworks, or wirelessly-controlled and deeply penetrable
microrobots have been suggested as novel forms of controlled-release
drug delivery systems for targeted therapy in a variety of disorders par-
ticularly the chronic ones [281,285,294-296] that would be of great
value in personalized medicine.

Magnetic microrobots can be used for ocular drug delivery [297].
Wireless positioning and manipulation of drug delivery into the eye is
a promising approach for targeted therapy with minimal invasiveness.
Meanwhile, several issues have remained challenging including those
related to the fabrication process, controlling interactions with complex
biological environments, and biocompatibility [297]. Appropriate path
planning is of critical importance for precise targeting and controlled
drug delivery [298]. Besides simulation of the dynamic environments
including the obstacles with different sizes and shapes, simulated
annealing or a variety of algorithms such as the heuristic search, path
planner, or swarm intelligence-based algorithms have been applied
for detection of collisions, path planning and optimizing, target finding,
or solving the problems associated with path finding [284,299-302].
Quorum sensing technique has been employed to improve path finding
efficiency [303]. Furthermore, a novel technique which has been in-
spired by the bacterial foraging technique, has been represented for op-
timizing robot path planning and finding the shortest path towards the
target [304]. An area coverage approach based on the genetic algorithm
has also been proposed which is characterized by the combination of
online and offline path planning for coping with environmental uncer-
tainties and overcoming the obstacles during drug delivery [305].
Turning angles and lengths of paths should be assessed to find the
shortest and collision-free path [305]. This might optimize energy con-
sumption of robots which consist of microsensing, microactuating, and
microcontrol units, drug reservoir, and energy source for targeted drug
delivery within certain periods of time [290,293,305]. Under the guid-
ance of microcontrollers, microrobot moves towards the target followed
by drug release. Because of the reusability, robots are able to bring back
other drug reservoirs to the target site (Fig. 6), [305].

The entrapped drug is released from nanorobot via manipulation of
the physiological conditions, however, any unexpected alteration of pH
or temperature may negatively affect drug release profile [305]. In this
respect, designing the externally-controlled nanomachines might be
more appropriate for controlled drug delivery [306].

Magnetoelectric nanorobots are promising nanodevices for drug de-
livery. Locomotion of these nanocarriers is controlled by magnetic fields
and their cargos are released in controlled and site-specific fashion
[307]. For increased drug loading, nanowires have been pretreated
with polydopamine leading to drug adsorption onto the surface of
nanorobot [306-308]. Magnetic resonance imaging (MRI)-based drug
delivery systems containing MRI propulsion and tracking modules, con-
troller, and drug-loaded nanocapsules enhance the efficiency of thera-
peutics agents and reduce their side effects [309]. Application of the
nanorobotic system guided by MRI enables real-time monitoring of
nanocapsules by an active targeting mechanism [309]. Following
surface modification, metallic nanoshells, quantum dots, gold nanopar-
ticles, or CNTs have been used as carrier modules of MRI-guided
nanorobots [310,311]. Meanwhile, application of the appropriate algo-
rithms to control these nanocarriers against the environmental pertur-
bations and providing 3D navigation path for enhanced targeting
accuracy are necessary [312,313].

DNA nanorobots for biosensing, triggering apoptosis, or drug deliv-
ery, have been activated by external nucleic acids capable of interaction
with their complementary counterparts on nanorobots [314-316].
Application of ANNs for prediction and optimizing the performance of
nanorobots embedded with biosensors and transducers, is a promising
approach for detection of tumor cells and targeted drug delivery
(Fig. 7), [65,317] that might be of critical significance in cancer therapy
and reduced adverse drug reaction. Detection of [3-catenin and
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Fig. 6. Schematic illustration of drug release from a microrobot. The robot consists of
microsensing, microactuating, and microcontrol units, and drug reservoir for targeted
drug delivery within certain periods of time. Under the guidance of microcontrollers,
microrobot moves towards the target followed by drug release. Because of the
reusability, microrobot is able to bring back another drug reservoir to the target site.
Adapted from Ref. [305].

E-cadherin by these nanorobots facilitates target identification and
localized delivery of therapeutics [293,318-322].

Nanorobots may also be applied for controlled delivery of genes and
overcoming the challenging issues associated with non-specific gene
delivery methods [323]. Moreover, nanorobots provide longer resi-
dence time for anticancer agents [324,325]. Controlled drug delivery
and capability of nanorobots to carry drug combinations may provide
pharmacological synergism and reduced drug resistance that might be
of great significance in treating various cancer types [325,326]. For in-
stance, combination of cyclosporine and doxorubicin has been shown
to eradicate both leukemia and lymphoma [326,327]. For travelling to-
wards the cancer cells, bionanorobots should face an unstructured and
cluttered environment in the bloodstream [328]. This necessitates
application of the suitable controllers and sensors for finding the right
trajectory, overcoming the obstacles, discrimination of tumor cells (via
detection of any difference between the temperature or electromag-
netic field of the healthy and tumor cells), and delivery of the appropri-
ate amount of drug [298,328].

Following determination of the concentration of glycoprotein mole-
cules on the surface of cancer cells, cancer type can be identified by
bionanorobots [298]. For instance, increased levels of CA19-9 and
CA125 biomarkers indicate the presence of lymphoma and leukemia,
respectively. Meanwhile, both of these markers are expressed in the
aforementioned cancer types [298,319]. In fuzzy logic decision-making
system which can be applied for navigation, overcoming the obstacles,
preventing the collisions with other bionanorobots, tumor diagnosis,
recognizing the disease stage, handling the uncertainties and noise, or
delivery of the appropriate drug dosage [298,319], sensitivity and con-
centration of CA19-9 and CA125 biomarkers have been considered as
determining variables for discrimination of tumor cells [298]. Because
of the uncertainties associated with marker concentrations, application
of Mamdani fuzzy logic with flexible structure has been suggested for
tumor diagnosis [329]. Mamdani approach provides the possibility to
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Fig. 7. Schematic illustration of targeted drug delivery using the nanorobots. Nanorobots embedded with biosensors and transducers can be applied for detection of tumor cells and

targeted drug delivery. Adapted from Ref. [291].

incorporate the uncertainties into the rule-based system or model the
uncertainties associated with navigation of bionanorobots or drug de-
livery process [329]. Reduced processing time and power consumption
are other beneficial aspects of Mamdani fuzzy logic which provide in-
creased execution time for bionanorobots [329]. After tumor diagnosis,
drug dosage for intracellular delivery should be determined. Application
of Takagi-Sugeno fuzzy model provides the possibilities of linear map-
pings and obtaining the effective dose for intracellular delivery [330].
Following attachment to the tumor cell surface and drug injection by
nanocannula, mission complete rule guides the bionanorobot towards
the excretory system [298].

In recent years, increasing interest has been attracted towards the
development of medical capsule robots, the micro-systems capable of
autonomous operation within the body for theranostic applications,
monitoring disease progression, and drug delivery [331-334]. Mean-
while, the commercially available capsule robots do not execute the al-
gorithms for optimized drug delivery that may be due to the absence of
an active position control or real-time localization [335]. In this respect,
integration of a holding mechanism inside the capsule or application of
three-axis Helmholtz coil capsule capable of rotational movement, mag-
netic locomotion system, or reed switch have been proposed for
targeted drug delivery [336-339]. For rapid development of the medical
capsule robots and intelligent drug delivery in a targeted manner, drug
delivery capsules have been designed based on the combination of mul-
tiple functionalities, an intelligent scheduler, and coil-magnet-piston
mechanism for controlled drug release. The magnetic force and drug re-
lease profile have been modeled followed by experimental verification
[340].

5. The significance of target fishing

Identification of the molecular targets might be of critical signifi-
cance in the process of drug design. Target fishing (TF) by which the tar-
gets, mechanisms of action, or side effects of therapeutics are predicted,
plays an important role in modern drug discovery [341,342]. In this con-
text, algorithms of machine learning and cheminformatics toolkits pro-
vide a deeper knowledge about the structures of complex compounds
and designing novel drug candidates against the complex diseases
[341-344]. TF by exploring the mechanisms of action of small

molecules, identifying their target proteins, and speeding up the devel-
opment process [345,346] may significantly reduce experimental costs.

In drug discovery, bridging the biological and chemical space might
be quite important [347]. 2 and 3D descriptors can be applied to predict
the targets of ligand probes considering their similarities to the refer-
ence molecules. In this context, high affinity binding of diethylstilbestrol
to the estrogen receptors has been revealed [347]. TF which is based on
the computational-, genomics-, and proteomics-based methods, is a
promising approach for assessment of drug polypharmacology and mo-
lecular similarities [348-350]. Using a large-scale TF approach based on
the similarity rankings with data fusion, drug-relevant targets and po-
tential toxicities have been predicted indicating the significance of
ligand-based TF in drug discovery [351]. Furthermore, search for the
similarity of bioactivity profiles has been performed for identification
of the targets for uncharacterized compounds, suggesting the novel tar-
gets for old therapeutics, and prediction of the polypharmacological
profiles of various compounds, adverse effects, or novel therapeutic in-
dications [352-354]. Considering the similarities between the ligands,
the relationships between loperamide, methadone, and emetine with
neurokinin, muscarinic, and adrenergic receptors (NK,, Ms, ot,, respec-
tively) have been successfully characterized [355]. Using the similarity
search methods, the inhibitors of DNA methyltransferase and anti-
thrombotic activity of the anti-diabetic drug, glibenclamide, have been
identified [356,357]. Furthermore, side-effect similarities and network
analysis have enabled identification of the novel drug targets [358].
Application of phenotypic side-effect similarities followed by in vitro
binding assay is a promising approach for characterizing unexpected re-
lationships between drugs [359].

Chemoproteomic technologies have provided the possibilities to in-
vestigate the mechanisms of action of a variety of drugs or bioactive
small molecules and characterize drug-induced alterations in protein
expression [360]. Integrating the platforms of chemical proteomics
into the initial stages of the process of drug discovery facilitates identi-
fication of the novel target proteins [361]. Chemoproteomic fishing
has enabled identification of the modulators of brain glycogen
phosphorylase which regulates the metabolism of glucose [362].
Chemoproteomics has also been applied to characterize the properties
of calixarene derivatives and their interactions with identified biomo-
lecular targets, and targets of bioactive small molecules [363,364]. It
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has been revealed that bioactive compounds exert their pharmacologi-
cal effects via modulation of various targets which could be unrelated by
structure, function, or sequence [364].

In the cellular environment, application of the photoaffinity probes
based on the carbene precursor, diazirine, has facilitated identification
of target proteins and interactome mapping [365]. For rationalizing
the cytotoxic effects of aryl-aminopyridine derivatives against various
cancer cell lines, screening compound libraries against targets has
been performed considering the best correlation between in vitro cyto-
toxicity and docking scores [366]. Based on the docking results, the
modes of action of aminopyridine derivatives implicate disturbance of
the cell cycle and signaling pathways via inhibition of various kinases.
Furthermore, non-specific inhibition of tyrosine and cyclin-dependent
kinases has resulted in the cytotoxic effects [366]. These types of find-
ings can be utilized for modification of compounds and development
of drugs capable of targeting the proteins implicated in the survival
and proliferation of cancer cells.

TF using the cross-docking approach can be performed for identifica-
tion of the novel protein-drug interactions. This might be useful for
explaining various types of side effects or suggesting new modes of ac-
tion [367]. For instance, peroxisome proliferator-activated receptor-y
has been predicted as a target of ethacrynic acid that may justify the hy-
perglycemia induced by this duretic. The novel repositioning opportuni-
ties of drugs or potential mechanisms of adverse reactions can be
predicted by cross-docking [367].

For investigating the effects and mechanisms of action of natural
products in treatment of atherosclerosis, sepsis, or migraine, TF has
been performed to identify the candidate targets and target-
compound interactions [368-370]. Capsaicin has shown therapeutic
potentials against a variety of disorders [371-375]. In order to better un-
derstand the mechanisms of action of this alkaloid, its potential targets
have been predicted by PharmMapper followed by confirming via
molecular docking and chemical protein interactome. Based on the find-
ings, capsaicin is a potent inhibitor of the isoenzymes of carbonic
anhydrase [376]. A pharmacophore-based TF approach has been
employed to predict the targets of isoquinoline alkaloids with protective
effects against the inflammation, pain, infections, or cancer [377]. TF ap-
proaches have also been applied to predict the potential targets and mo-
lecular mechanisms of the flavonoid, baicalein. It was shown that
baicalein remarkably reduce the generation of intracellular nitric oxide
and reactive oxygen species and exhibit protective effects against the
neurotoxicity induced by N-methyl-D-aspartic acid receptors indicating
the antiparkinsonian effect of this flavonoid [378]. Furthermore, chem-
ical proteomics strategies can be used for identification of the binding
partners of natural products including the antibacterial and cytotoxic
agents [379]. For target identification of the electrophilic natural prod-
ucts, activity-based protein profiling (ABPP) is a promising approach
[380]. Competitive ABPP has been applied for development of the inhib-
itors of serine hydrolase with therapeutic potentials against a variety of
disorders [380-382]. Meanwhile, indirect nature of the most of the
identification approaches and non-specific binding of some proteins
are challenging issues in chemical proteomics that necessitates applica-
tion of the advanced quantitative proteomics techniques and suitable
linkers [275,276].

Regarding the special types of diseases in which the conventional
drugs could be associated with serious side effects, identification of
new macromolecular targets may provide therapeutics with increased
activities and reduced side effects. Molecular modeling has enabled
identification of the potential targets for novel anti-leishmanial agents
[383]. Following TF study, 4-phenyl-1,3-thiazol-2-amines have been
represented as suitable scaffolds for designing the selective anti-
leishmanial drugs with improved activities [383]. TF tools have also
proved to be useful for predicting targets for anti-tuberculosis drugs.
DNA gyrase and RNA polymerase have been successfully predicted as
targets of the antibacterial agent, CBR-2092 [384,385]. In difficult-to-
treat diseases such as Chagas disease in which the currently available

drugs are associated with numerous side effects and low efficiency,
identifying the novel molecular targets and development of their inhib-
itors provide improved therapeutic outcome [386]. The effects and
mechanism of action of the antidepressant, sertraline, against the vari-
ous strains of Trypanosoma cruzi have been investigated by TF.
Chemogenomics strategy was used to identify several similar targets in
the parasite. Based on the findings, sertraline with multi-target charac-
teristics affects the bioenergetic metabolism of Trypanosoma cruzi [387].

In general, TF methods are based on the screening procedures
including the machine learning algorithms, selection of the reference li-
gands, and determining the appropriateness of targets [341,388]. For
target ranking or prioritization, various TF methods including those
based on the ranking perceptrons algorithms and support vector ma-
chines have been applied [388,389]. Using network-based inference
method, montelukast has been identified as the inhibitor of dipeptidyl
peptidase-4 [390]. Furthermore, polypharmacological profiles of ketoco-
nazole, diclofenac, itraconazole, and simvastatin on the estrogen recep-
tors have been evaluated [390].

Based on the necessity of validating the prediction and classification
methods, machine learning methods have been used for cross-
validation [391,392]. Retrospective analysis can also be used for valida-
tion of some TF methods [393]. Ligand-centric and target-centric
methods can be used for predicting the activity of test ligands against
the corresponding targets. Target-centric methods are usually based
on the multi-target QSAR models or unsupervised learning approaches
and numerous targets have been considered by ligand-centric methods
[394-399]. In a study conducted by Peén et al., the methods of ligand-
centric target predictions have been systematically validated using
various clinically-used drugs and novel estimates regarding the
polypharmacological profiles of drugs have been obtained [400]. Mean-
while, experimental confirmation appears more appropriate for valida-
tion of the predictive methods [184,197,238]. Over the last decade,
parallel screening has been suggested as a promising approach for ratio-
nal TF and pharmacological profiling of the chemicals [401,402].

6. Challenging issues and the potential solutions

The emergence of state-of-the-art and high-performance techniques
and remarkable advances in computer science have provided the op-
portunities for improving drug screening strategies and development
of advanced drug delivery platforms such as feedback-controlled, pro-
grammable, and microchip-based systems [1-5]. Meanwhile, a variety
of issues have remained challenging [1-5,188,328]. Regarding the
implantable drug delivery systems, size of drug reservoir, delivery effi-
ciency, biocompatibility, providing appropriate concentrations of
drugs, long-term operability, or potential risks associated with inappro-
priate design are challending issues [4,5,9,12,14,19]. In this respect, ap-
plication of safe biomaterials and specifically designed drug delivery
devices with predictable drug release profile provides sustained and ho-
mogenous drug concentrations leading to the increased patient adher-
ence to treatment [9,12]. Furthermore, miniaturization design of
actuator provides larger drug reservoir without enhancing the overall
volume of device [14].

Fabrication of the fully operational nanorobots for theranostic appli-
cations and targeted drug delivery appear quite difficult [283,285,288].
This necessitates acquiring a deeper knowledge about the biological
processes, interactions of nanorobots within the body and their mecha-
nisms of movement in liquid environments, application of the appropri-
ate algorithms for controlling against the environmental perturbations,
designing cores capable of recognizing the cells and molecular cues, size
reduction, appropriate power supply, propulsion, actuation, sensing,
system integration, control of the navigation and release of payloads,
and path planning for controlled delivery of drugs, minimized con-
sumption of energy, and optimized heat dissipation [280-282,285]. In
cancer theranostics, high responsivity and targeted movement of
nanorobots, cell recognition and attachment, and payload delivery are
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of critical importance [280-282]. Because of the uncertainties, sensor
noise, or unknown parameters, nanorobots may fail to effectively deter-
mine drug dosage for delivery and differentiate healthy and cancer cells
or tumor cell types [300,305]. In design process of nanorobots, alter-
ations in cancer cells and environmental factors, heterogeneity of tu-
mors, noise or uncertainty should be taken into account [285,288,290].
Since several factors, but not a fixed value, are usually considered for
dose calculation of anticancer drugs, development of decision- making
systems capable of managing the uncertainties appears neces-
sary [290,293,298]. Moreover, inappropriate theranostic activity of
nanorobot does not result in tumor eradication or even causes adverse
events [288,290]. In general, application of the robust strategies and
bio-inspired approaches might be helpful for designing efficient
nanorobots with improved biocompatibility and reduced safety con-
cerns [285,288]. Furthermore, development of effective communication
between these automated nanomachines with coordinated move-
ments, application of simulation techniques to acquire a deeper
knowledge about the interactions of bionanorobots and predict
their characteristics and dynamics within the body are necessary
[307,313,316]. Regarding the capsule robots, suitable power backup, lo-
comotion, space for drug reservoirs, mechanisms of anchoring, control
over the profiles of drug release, incorporation of bi-directional commu-
nication systems, telemetry, image sensing, capacity of drug storage,
theranostic activity, controlled drug release, clinical efficiency of deliv-
ered drugs, safety issues, and high costs have remained as challenging
issues [310,334]. Advances in miniaturization techniques and electron-
ics facilitate development of theranostic nanobots capable of traveling
through the circulatory system [315,316]. Al tools can be applied for
solving a variety of problems including the nanotechnology-related
ones, performing computations and sophisticated tasks, data interpreta-
tion, and drug design with reduced side effects [24,30]. Successful
Al-based procedures result in the development of stable, functional,
and biocompatible drug delivery systems capable of overcoming a vari-
ety of limitations, accurate dosing, and targeted dug delivery with min-
imal safety concerns [24,26,30]. ANNs as highly adaptive nonlinear
optimization algorithms along with other machine learning techniques
including the genetic programming, fuzzy logic, or decision tree can be
applied for overcoming the challenging issues in the field of modern
drug discovery [24-26]. ANNs have attracted a growing interest in var-
ious scientific fields including the pharmaceutical industry that might
be due to their capability of nonlinear data modeling, solving the com-
plex problems, analyzing the large and multivariate data sets, making
predictions, modeling and optimizing the formulation process, design-
ing controlled release drug delivery system and classifying the associ-
ated problems, simulation of protein-protein or small molecule-
protein interactions, and simultaneous prediction of multiple biological
activities and in vivo toxicity [24,34,37,45,46]. ANN-based methods
minimize the number of experiments and costs, optimize drug release
profile, or estimate pharmacodynamic and pharmacokinetic profiles of
drugs. In cancer therapy, application of fuzzy logic-based intelligent sys-
tem is useful for theranostic applications, improved drug delivery effi-
ciency and navigation of bionanorobots, and reduced false-positive
rates [21,84,190,198,200]. Despite the advantages of Al tools such as
rapid and continuous performance of a variety of tasks (e.g. designing
of bionanorobots and controlled drug delivery) [24-26], Al strategies
can be associated with several problems such as high costs of mainte-
nance, repair, frequent upgrading of software, lost code recovery, and
system reinstating, lack of common sense, creativity, judgment, or ap-
propriate response to the altering environment, reflection of data inac-
curacy in the obtained results, risk of data loss, or ethical concerns
[24,26,30]. ANN models may not be useful for clarification of the mech-
anism of correlation between the variables [25]. Furthermore, obtaining
areliable ANN model is time-consuming and necessitates application of
a large amount of data and sample size for development of more accu-
rate models [33-35]. In general, constructing an ANN model with

proper topology is difficult [25,47], meanwhile, development of more
powerful software packages might be helpful [45].

Lack of rational interpretation of the biological events may nega-
tively affect the performance and reliability of Al techniques
[69,152,174]. Meanwhile, problems like the incorrect model validation,
overtraining, or overfitting can be overcome using the methods such as
training with dropout techniques, early stopping, or Bayesian regulari-
zation which enable the development of robust models with high pre-
diction capabilities [30,34]. Furthermore, sophisticated methods
including the prediction-driven matched molecular pairs method help
to evaluate the importance of network weights and facilitate model in-
terpretation [23,25,47].

Despite the applicability of ANNs for modeling the complex datasets
and generating the predictable models regarding the clinical response
to drug products, selection of appropriate algorithms or datasets in
ANNs-based drug research efforts can be quite challenging [103]. In
this context, effective annotation of datasets, application of the proper
methods for more accurate quantification of uncertainties and errors
in the experimental protocols, model checkers for validating the perfor-
mance of Al systems, computational approaches for prediction of the
biological characteristics of molecules, optimization algorithms for en-
hancement of the computational efficiency and site-specific drug deliv-
ery, individualized dosing, and risk management shorten the relatively
long distance towards the regulatory approval and commercialization
of Al-related products [189,201].

In general, ANN models along with the conventional methods facili-
tate development and optimization of controlled release drug delivery
systems and evaluation of the effects of process and formulation vari-
ables on delivery system [42,45]. Despite the capability of machine
learning-based models for speeding up the process of drug discovery,
rational drug design, target prediction, and development of safer
drugs [45,46], integration of the experimental procedures and in silico
simulations and development of interpretable machine learning models
are necessary to reduce the rates of false negative or positive predictions
[153,155]. Finally, application of high-performance nanocomputers
might be useful for implementing Al paradigms [115].

7. Conclusion

Enormous amount of time and costs in drug research and develop-
ment necessitate application of more innovative techniques and strate-
gies. Al technologies offer tremendous opportunities for analyzing the
massive amounts of multivariate data, solving the complex problems
associated with designing of functional drug delivery systems, making
more accurate decisions, classification and modeling of diseases, accel-
erated drug discovery, identifying biomarkers, drug targets, potential
drug candidates and their pharmacological properties, novel indications
for existing therapeutics, relationships between the formulations
and processing variables, and physiological or pathophysiological path-
ways, optimizing dose ratio, and predicting the bioactivities and interac-
tions of drugs, molecular behavior, disease status, cellular response,
efficiency of drug combinations, and treatment outcomes. Besides de-
signing the novel therapeutics with desired properties, application of
Al-powered platforms for matching patients with the most relevant
clinical trials may significantly reduce errors and improve cost-
effectiveness. Analyzing large-scale molecular information and data
connections provide new insights into the molecular mechanisms of
diseases and factors affecting cell or tissue function leading to the devel-
opment of more effective drugs or delivery systems. In this respect, Al
would be one of the key elements of drug development process and per-
sonalized medicine.
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